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Abstract 

Inelastic plasmon diffuse scattering (PDS) is treated 
as an effective position-dependent potential perturb- 
ing the incident electron wavelength in a solid surface, 
resulting in an extra phase grating term in the slice 
transmission function. This potential is derived for 
tlqe geometry of reflection electron microscopy 
(REM) and high-resolution electron microscopy 
(HREM). The energy-filtered inelastic images can be 
calculated following the routine image simulation 
procedures by using different slice transmission func- 
tions for the elastic and inelastic waves, by consider- 
ing the 'transitions' of the elastic scattered electrons 
to the inelastic scattered electrons. It is predicted that 
the inelastic scattering could modify the electron 
intensity distribution at a surface. It is possible to 
take high-resolution energy-filtered inelastic images 
of crystals, the resolution of which is about the same 
as that taken from the elastic scattered electrons. 

I. Introduction 

Multislice theory has been successfully applied in 
image simulation for high-resolution electron micros- 
copy (HREM). Recently, this theory has been 
modified for calculating the image contrast and elec- 
tron resonance processes at a crystal surface in 
the geometry of reflection electron microscopy 
(REM) or reflection high-energy electron diffraction 
(RHEED).  Contrast variations of an atomic surface 
step under different focusing conditions were inter- 
preted (Peng & Cowley, 1987). Surface-layer reson- 
ance properties under resonance conditions were 
simulated; the generating processes of reflection 

waves at an atomic flat surface and a surface with a 
step up or down were investigated and compared with 
REM observations (Wang, Lu & Cowley, 1987; Wang, 
1988). All these calculations, however, were based on 
elastic scattering theory. In the REM case, most of 
the incident electrons have lost the energy of the 
surface plasmon during the scattering (Wang & 
Cowley, 1988), and the calculated results from the 
elastic theory cannot represent the real interaction 
behavior of the electrons with surfaces. A new theory 
which includes the effects of electron inelastic scatter- 
ing in the dynamical calculations is required for quan- 
titative analysis of REM and RHEED data. This 
situation also happens in HREM ifa sample is thicker 
than the inelastic mean free path of the electrons. 

Recently Wang & Lu (1988) have suggested a new 
method, from which the plasmon diffuse scattering 
(PDS) can be included in the calculation of the multi- 
slice theory. The energy loss of the electrons due to 
plasmon excitations was characterized by an effective 
potential modifying the kinetic energy of the incident 
electrons, and resulting in a perturbation to the elec- 
tron wavelength. The phase grating function of each 
slice is the product of an elastic with an inelastic 
function arising from the plasmon losses. Thus multi- 
ple excitations of plasmons were automatically invol- 
ved in the calculations. 

In this paper, as a continuation of our previous 
work (Wang & Lu, 1988), (1) the relativistic dielectric 
response theory will be employed to calculate the 
electron energy loss rate and its associated perturba- 
tion effect on the slice transmission function (STF); 
(2) the quantum-mechanical basis of this method will 
be addressed; (3) a modified multislice theory for 
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simulating the energy-filtered inelastic images for 
REM and HREM will be presented; (4) the effects 
of the angular distribution of inelastic scattering will 
be introduced in the multislice calculations; and, 
finally, (5) calculations for GaAs (110) will be used 
to demonstrate the importance of the PDS for image 
simulations in REM. 

2. Plasmon diffuse scattering in dynamical calculations 
for REM and HREM 

Plasmon diffuse scattering (PDS), thermal diffuse 
scattering (TDS) and single-electron excitations are 
the three main inelastic scattering processes in elec- 
tron diffraction. A detailed treatment of TDS in 
dynamical calculations has been given by Cowley 
(1981, 1988a). Since the scattering cross section of 
single-electron excitation is much smaller than that 
of plasmons, the contribution to the electron images 
can be neglected. Thus the main inelastic scattering 
process which needs to be addressed in the dynamical 
calculation is the PDS. 

To derive the modified from of the slice trans- 
mission function, the total energy loss of an electron 
due to plasmon excitations needs first to be con- 
sidered. Starting from a planar interface formed by 
two semi-infinite large media a and b, in the relativis- 
tic dielectric excitation theory (e.g. Garcia-Molina, 
Gras-Marti, Howie & Ritchie, 1985), a point electron 
travelling in medium b at distance x parallel to an 
interface with medium a has a differential probability 
per unit distance for energy loss (hto) and momentum 
transfer (hqy), in the direction parallel to the interface 
and normal to the moving direction, given by 

d 2 p ( t ° ,  qy, x )  e2 [ 1-- /32eb 1 
dto dq~ - 2 . a . E e o h V 2  Im F(qv, x) - - -  , 

• " EbOl b .] 

(1) 

2 2 q_ ( c o / V ) 2 ( 1  is the 
= = -132~°,~), where/3 v/ c, Ola, b qy V 

velocity of the electron, and ea and eb are the dielec- 
tric constants of media a and b. The quantity F(qy, x) 
in (1) is given by 

F(qy, X) [ 2"a 2(e-~ -" eb) ] = t- (a a - ab)(1 - %[32) 
L '~aOlb "4- 8bOl a 

exp (-2~blxl) x (2) 
EbOlb ( Ol a -t- Olb ) 

The total energy loss of the electron while travelling 
a distance z is 

0o qc 

AE(x , z )= j  dz I dto I dqyht° d2p(t°, qy, x)/dt° dqy • 
o o o 

(3) 

Here z is a function of x, depending on the scattering 
trajectory of the electron (Howie, Milne & Walls, 
1985). The integration dq,. covers various momentum 
transfers (hq:.) parallel to the interface and normal 
to the beam direction with an upper limit set by some 
specimen-dependent cut off. The inelastic mean free 
path of the electron is defined as 

q¢ 
1 / a ( x ) = ~  dto ~ dqyd2p(to, qy, x)/dtodqy; (4a) 

o o 

the associated absorption coefficient is 

tx(x)= l /n (x ) .  (4b) 

In the multislice theory, a crystal is treated as a 'fixed' 
distribution of atomic potential wells. The total struc- 
tural energy of the crystal is assumed not to be influen- 
ced by the incident beam. There is no energy transfer 
from the crystal to the incident beam. Then the total 
energy of the electron can be written as 

E=p2/2m+[-eUa(x , y , z ) ]+AE(x , z ) .  (5) 

The first term is the kinetic energy of the electron. 
The second term is the potential energy of the electron 
in the crystal potential field (Ua). The third term is 
the total energy loss of the electron due to plasmon 
excitations, which is essentially the energy transferred 
from the electron to the plasmon oscillators. For fast 
electrons, the last two terms in (5) are much smaller 
than the kinetic energy (100 keV) of the electron and 
can be considered as small perturbations. The total 
energy of the electron can be taken approximately as 
its kinetic energy. 

To find the perturbation result of AE on the scatter- 
ing of electrons in a solid, one starts from the 
Schr/Sdinger equation 

[ - (h2 /2m)V2-eUa(x , y , z )+AE(x , z ) ]~=E~  (6) 

to derive the phase grating function of a thin potential 
slice. For fast incident electrons, ¢ can be written in 
the form ~ exp (iK.r),  where K is the incident elec- 
tron wave vector. After making the approximation 
IV2 I I2K.V ,I (Hirsch, Howie, Nicholson, Pashley 
& Whelan, 1977), one can write (6) as 

( h2/2m)[ K 2 ~ b  - i2K.VO]+(-eUo + zaE)0 = Etk. 

(7) 

Since E = h2K 2/2m = eVo, [Kx[ "~ [K~I, IKy[ ~ [Kzl and 
Kz-~ Ko, then (7) can be written in the form 

- i (h2Ko/m)oO/oz---(eUa-aE)O. (8) 

The electron wave (0o), after being scattered by a 
thin potential slice Az, is given by 

~=qsoexp io" I (U,+ Uer) dz , (9a) 
o 

where cr = 7r/;to Vo. ;to is the wavelength of the initial 
incident electron with energy Eo = eVo. Uer is an 
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effective potential for characterizing the PDS. 

Uef = -AE(x, z)/e 
oo qc 

= - ( l / e )  i dz j" dw j" dqy hw 
0 0 0 

× d2p(to, qy, x)/dw dqy. (9b) 

Equation (9a) is the result of the phase-object 
approximation. It is a basic equation of the multislice 
theory. The modified transmission function for the 
nth slice can then be written as 

q, = exp (io'UaAz) exp (io'UerAz). (10a) 

The first term is the phase-grating result of the crystal 
potential, which is the same as that in the original 
multislice theory (Cowley & Moodie, 1957). The 
second term is a phase perturbation function arising 
from the inelastic PDS. The electron wave function, 
after being scattered by the nth slice, can be written 
as (Cowley & Moodie, 1957) 

On=(~n_lqn)*Pn, ( lOb)  

with Pn as the propagation function of the nth slice 
for the electrons with energy Eo, 

P,,=(i/AzAo) exp[- ig(x2+ y2)/2Az]. (10c) 

3. Modified multislice theory for calculating the 
energy-filtered inelastic images 

Calculated results of (10a) to (10c) give the total 
contributions of the elastic and inelastic scattering to 
the electron images. In practical analysis, it is desir- 
able to obtain the energy-filtered inelastic high-reso- 
lution images to compare with the experimental 
observations (Hashimoto, 1985). However, there is 
no proper theory available for simulating the inelastic 
images. The purpose of this section, based on the 
theory in § 2, is to introduce a modified multislice 
approach for calculating the inelastic images in REM 
and HREM. 

We select a narrow energy filter that allows only 
those electrons which have lost the energy of a single 
plasmon (Ep) in the energy range Ep-A/2< AE < 
Ep + A/2 to pass. The energy window (A) is selected 
so small that the electrons which pass through the 
filter can be considered as a monoenergetic stream 
with kinetic energy Eo- Ep. The other electrons with 
different energy losses are assumed to be 'absorbed' 
by the filter. The part that needs to be considered 
represents the 'transitions' of the eleastic scattered 
electrons (with energy Eo) to the inelastic scattered 
electrons which have lost the energy in the window 
range. The propagation of these electrons in the crys- 
tal after being selected by the window is reclassified 
as 'elastically' scattered; otherwise they will be 'absor- 
bed' by the filter. The propagation of these filtered 
electrons from different slices having energy Eo-Ep 
is treated as coherent (Doyle, 1971). In this case, 

calculations based on coherent interference do not 
differ significantly from calculations based on inco- 
herent interference if the sample is thick (Cowley, 
1988b). This is because the sum of the waves from a 
large number of slices averages out their interference 
effects. 

If qe is defined to represent the elastic scattering 
of the crystal potential Ua, and q',, is defined to 
characterize the generation of an inelastic wave from 
the nth potential slice, with a probability Az/A (x, A), 
then 

qe =exp (io'UaAz); ( l l a )  

q'n = exp [io-( UaAz)] exp [io'Uer(A)Az] 

X[Az/A(x, A)] 1/2 ( l l b )  

Here Uer(d) is defined in (9b) except that the integra- 
tion limits ofw are replaced by Ep - A/2 and ER + D/2 
in order to specify the selection range of the energy 
filter. The term exp [itrUef(d)Az] is added in (11b) 
to indicate the average phase shift due to the energy 
loss according to (10a). The introduction of the factor 
(Dz/A) 1/2 in (11b) is analogous to the treatment of 
the transmission electron microscopy case (Doyle, 
1971), which indicates the generation of the plasmon 
diffuse scattering from the nth slice. The electron 
mean free path A for the energy-window range con- 
sidered is 

Ep-~" A / 2 q,. 

1/A(x, ,4)= dw ~ dqy d2p(w, qy, x)/dw dqy. 
Ep--A/2  0 

( l l c )  

If we assume that an electron wave (g~o) is incident 
on the first slice along the z direction, the wave after 
penetrating this slice, according to (lOb) and (11), 
would be 

qJ~=[~oq~exp(-p.Az/2)]*P~; (12a) 

q,~=[~Ooq~exp(-~az/2)]*Pi. (12b) 

Here 4'~ is used to characterize the elastic scattered 
wave; q/, is used to characterize the new generated 
inelastic wave. The term exp (-tzAz/2) is added to 
introduce the absorption effect of the multiple PDS 
(Cowley, 1981)./x is defined in (4a). In (12), P,~ and 
Pi,, are the propagation functions for the elastic (with 
energy Eo) and inelastic (with energy Eo-Ep)  scat- 
tered electrons respectively, as defined in (10¢). 

In practical electron energy-loss experiments, the 
plasmon peak is relatively sharp compared with the 
other intensities with energy loss lower than Ep, 
especially for metals and semiconductors. Based on 
this fact, the probability of electron scattering with 
energy loss hw < Ep - A/2 is much smaller than that 
of elastic scattering while propagating through a dis- 
tance az. Then the probability of having a double 
inelastic process, first losing energy hw then losing 
energy Ep- hw, is very small compared with that of 
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having one inelastic process with energy loss Ep while 
penetrating a slice. Thus one does not need to con- 
sider the multiple scattering of the electrons with 
energy loss hw < Ep - / I / 2  back into the window. In 
other words, 'transitions' of electrons with energy loss 
hw ( < E p - A / 2 )  to electrons with energy loss in the 
window range, during the propagation through a 
slice, can be neglected. Electrons which have the 
possibility of losing double the energy of the plasmon 
would be absorbed by the filter. Therefore, the wave 
function after penetrating the second slice can be 
written as 

~ = [qJ~q~ exp ( - / z A z / 2 ) ] .  P~; (13a) 

q,~q2)exp(-~az/2)],P~; (13b) 

qJ~ is the continuous elastic propagation of the 'old'  
elastic wave from the first slice. ~0~ is a summation 
of the elastic transmitted 'old' inelastic wave from 
the first slice and the new generated inelastic wave 
from the second slice. Following the same procedures, 
we write the wave function of the electrons after being 
scattered by the nth (n > 2) slice as 

e e q',~ = [ qJ,,-i q,, exp (-- /zAz/2)] .  Pen; (14a) 

d/i,,=[(~Oi,_,q~ +qJ]_,qi,,)exp(-tzAz/2)]* P~,,. (14b) 

Equation (14a) describes the elastic transmission of 
an elastic scattered wave through the nth slice. In 
(14b), the first term is the result of the elastic trans- 
mission of the inelastic scattered wave through the 
nth slice. The second term is the new 'generated' 
inelastic wave from the nth slice, arising from the 
'transition' of the elastic wave to the inelastic wave. 

After penetration of the crystal (Nth  slice), one 
may evaluate the time average over the phases of the 
elastic and inelastic scattered waves to give the 
intensity distribution in the energy-filtered inelastic 
images as 

I '  = I~/,,,I N'/212. (15) 
A factor N 112 is added in order to normalize the 
inelastic scattering intensity according to the Poisson 
distribution to that in transmission electron micros- 
copy (Doyle, 1971). The intensity of the pure elastic- 
scattered electrons is given by 

le = i~0~]2. (16) 

Throughout the above discussion, it can be seen 
that the calculation of the energy-filtered inelastic 
images is similar to the routine image simulation for 
HREM. However, the two 'interacting' waves, the 
elastic scattered wave and the inelastic scattered wave, 
need to be calculated through different slice trans- 
mission functions by considering the 'transitions' of 
the elastic electrons to the inelastic electrons. 
Equations (11) to (14) are the equations for calculat- 
ing the energy-filtered inelastic images of single- 
plasmon-loss electrons. Adequate theory can be 

derived for the energy-filtered double plasmon images 
by considering the 'extra transitions' of the electrons 
which have lost a single plasmon energy to the elec- 
trons which have lost double the energy of the 
plasmon. 

One thing we must emphasize here is that the 
calculation of the inelastic scattering in the geometry 
of RHEED has to consider the generation of the 
inelastic scattering while the electrons are travelling 
in the vacuum. This is equivalent to introducing an 
incident wave for the inelastic scattering, which 
should be added coherently to the final wave ~0~v/N ~/2 
in (15). A detailed introduction to this is given else- 
where (Wang, 1989a, b). 

4. Modifications of the inelastic angular distribution 
to the effective potential Ua 

A method of introducing the PDS in the multislice 
theory was given in § 2. The effective potential defined 
there was derived from the inelastic non-deflection 
approximation. In fact, large-angle inelastic scatter- 
ing can make a significant contribution to the forma- 
tion of diffase scattering in RHEED, particularly to 
Kikuchi patterns (Okamoto, Ichinokawa & Ohtsuki, 
1971). This section discusses the effect of the inelastic 
angular distribution on the calculation of/def. Since 
trAzU~r is very small, (10b) can be written as 

q&(x, y ) =  {q~,,_,(x, y)q~,(x, y) 

×[l+io'AzU~r(x,y,z)]}*P,(x,y). (17) 

By using Fourier transformation, in the two- 
dimensional reciprocal space u=(ux ,  U,,), one can 
modify (17) to 

qJ, (u) = [ ~,,_,(u)* q~(u)+ itrAz~b,_,(u) 

with 

* Uodu, z) ,  q~.(u)]Po(u). (18a) 

U~r(u, z )=  - A E ( u ,  z)/e. (18b) 

To include the inelastic angular broadening effect in 
the dynamical calculations the physical meaning 
of Uedu, z) needs to be clarified. In (18a), the first 
term represents the elastic scattering of the incident 
beams in the nth slice. The second term is the result 
of inelastic angular broadening on the transmitted 
beams. The angular distribution of this term is related 
to the angular distribution of the PDS covering 
various energy losses. Equation (18b) can be under- 
stood as an effective potential due to various energy 
losses while being scattered in a particular direction 
u during travel through distance z, i.e. 

_ _  d2P( ~°, q) 
Uer(u, z)= 1 dz dm hw 

e do) dq~ dq.,. q=2~,,," 
0 0 

(19) 
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In other words, (19) can be interpreted as the effective 
potential arising from the inelastic scattering by 
definite momentum transfer hq (=2zrhu) for various 
energy losses. Turning (19) back to real space, one 
obtains 

s U~x ,  y, z) = _-1 dz dto hto dq exp ( - i p  . q) 
e 

o o 

d2p(tO, q) 
x (20a) 

do) dqx dqy " 

Equation (20a) is a general expression for the 
effective potential. The analytical expression of U~r 
for the REM and HREM cases will be derived in the 
next section. Simil~ir results can be derived for A(p): 

1A = dto dq exp ( - i p .  q) do) dqx dqy 

o (20b) 
p=(x,y). 

4.1. Uef in R E M  and R H E E D  geometry 

In the geometry of REM and RHEED using (1) 
and considering the momentum transfer qy at position 
x in (19) one can obtain for Uef the expression 

i i  c Uer(x, y, z) - e dz dqy cos (qyy) 
2 , n - 2 e o  v 2  

0 0 

oo 

xIdolm[    x, 1 - - ~  to.  
E b Ol b . ]  

0 
(21) 

Equation (21) is a new modified effective potential 
for the REM case. It is easy to see that by taking 
y --- 0, (21) becomes (9b). The only difference between 
(21) and (9b) is that a Fourier transform factor 
cos (qyy) has been added in (21). By using (21) the 
angular distribution of the inelastic scattering will be 
included in the dynamical calculations. 

4.2. Uef for transmission H R E M  

In transmission HREM, all the incident electrons 
can be considered to travel approximately the same 
distance through a sample provided it is a thin foil. 
The main excitation process in a solid is the volume 
plasmon oscillation. By using Ritchie's (1957) results, 
one obtains the excitation probability for the volume 
plasmon per unit path length of energy loss (hto) and 
momentum transfer (hq) as 

1 ( 1 )  
dto dqx dqy -- 47T3EOh/) 2 q2+ (to//))2 Im - . (22) 

By using (20), one gets 
oo qc 

U~f(p, z) - ze do) dq q2 Im tO. 
27r2eot~2 + (03//))2 

0 0 
(23) 

Jo(qP) is the zero-order Bessel function. By taking 
the limit of non-deflected scattering (or very small- 
angle scattering) in (23), i.e. p ~0 ,  U~f becomes the 
total energy lost by the electron for various momen- 
tum transfers due to plasmon excitations. For the 
simple free-electron-model case, the half width of the 
plasmon angular distribution in reciprocal space is 
about top/2"rrv from (23), where tOp is the plasmon 
energy. The half width of U~r in real space is approxi- 
mately 27rv/tOp=450A for tOp= 15 eV and Eo = 
100 keV. This tells us that U~f is a very slowly varying 
function of p = (x2+y2) 1/2, which will not affect the 
resolution of the image according to (11 b). This indi- 
cates that the resolution of the images taken with the 
energy-filtered inelastic electrons is the same as for 
those taken with the elastic-scattered electrons. This 
prediction is in agreement with Cowley's conclusion 
and has been verified in HREM experiments (Hash- 
imoto, 1985). 

5. Application to GaAs (110) surface 

The theory presented in § 2 has been applied to a 
GaAs (110) surface to demonstrate the perturbation 
result of the PDS on the electron distribution at a 
crystal surface. The calculated effective potential Ucf 
and the absorption coefficient/x from (3) and (4b) 
are shown in Figs 1 and 2. /.Jet was calculated based 
on the assumption that the electrons are moving 
parallel to the surface. The total energy loss of the 
electrons is the product of its travelling distance and 
its energy-loss rate. An important feature shown in 
Fig. 1 is that the effective potential varies sharply only 
when the electron beam approaches the surface (x = 
0). This indicates that PDS plays a dominate role in 
RHEED. In this case, the modulation effect of the 
effective potential Uef in the phase grating function 
[qi in (11 b)] becomes important. This shows that the 
inelastic scattering could totally affect the scattering 
behavior of the electrons at a crystal surface, resulting 
in a perturbation to the image contrast in REM. 

In order to show the effect of PDS on the electron 
propagation at a crystal surface, one calculates the 
electron density distribution at the same thickness 
under the same incident conditions with and without 
considering the PDS in the slice transmission func- 
tion. By using the modulated form of the STF in 
(10a), one compares the calculated results for the 
three cases: (1) elastic scattering with no absorption 
(left column of Fig. 3); (2) elastic scattering plus 
plasmon inelastic effect with no absorption (middle 
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Fig. 1. Calculated effective potential Uef according to equation 
(9b) for GaAs surface, as a function of the electron excitation 
position x (x > 0 in vacuum; x < 0 in crystal), after travelling 
distance z = 1000 A. With beam energy 100 keV, q,. = 1 ,~-i. The 
dashed line represents the position of the surface. 

~ 8  

X 6 

A 
x 

v 4 

0 

- 3 0  

I 
I 

I 

I 
J 
I 

• , . , . I . , . , . 

- 2 0  . 1 0  0 1 0  2 0  3 0  

X in,A 

Fig. 2. Calculated absorption coefficient according to equation 
(4b) for GaAs surface, as a function of  electron excitation 
positions ( x > 0  in vacuum; x < 0  in crystal). Beam energy 
100 keV, qc = 1 ,~-I. The dashed line represents the position of 
the surface. 
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Fig. 3. Dynamical calculated electron intensity distributions near to the GaAs (110) surface by using the theories for elastic scattering 
with no absorption (left column), elastic plus plasmon inelastic effect without absorption (middle column) and elastic plus plasmon 
inelastic effect with absorption (right column), at thicknesses (A) 226, (B) 452, (C)  678, (D)  904, (E)  1130, (F)  1356, (G)  1582, 
(H)  1808 and (I)  2034/~. With beam energy 100 keV, beam azimuth [001], incident angle 12 mrad and beam width b = 30 ,~. The 
intensity is output in the beam cross section with the beam going into the paper. 
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column of Fig. 3); and (3) elastic scattering plus 
plasmon inelastic effect with absorption (right column 
of Fig. 3). A monoenergetic electron beam with energy 
100 keV and beam width b--30,~  was selected to 
strike the surface at a glancing angle of 12 mrad, 
corresponding to the 440 specular reflection of GaAs. 
The slice thickness was chosen as A z  = 2.827 A.. The 
calculated results were output in a plane perpen- 
dicular to the beam at different propagation distances. 
A detailed introduction to the calculation method has 
been given elsewhere (Wang et al., 1987). 

Fig. 3 shows the calculated electron density distri- 
butions at the surface for the three cases. Comparison 
between the intensity output in the left and the middle 
columns does not show any obvious difference from 
rows (A) to (C). This indicates that the PDS cannot 
affect the image contrast significantly if the sample 
is thin ( t<600 .~) .  Thus, the 'safety' thickness in 
simulating the REM images b~¢ using the elastic multi- 
slice theory is about t < 600 A for GaAs. If the elec- 
tron propagation distance is longer than 600 A, the 
influence of the PDS needs to be taken into account. 
The interference results of the incident wave with the 
reflection wave can be observed in the region of bright 
intensity fringes. The effect of the PDS at the surface 
is to spread out the electron distribution around the 
atomic columns, resulting in an intensity redistribu- 
tion between the surface potential barrier and the first 
atomic layer [see Fig. 3 (G)]. The electrons have been 
scattered closer to the surface in the vacuum and 
further away from the surface inside the crystal [see 
Fig. 3 (I),  left and middle columns]. This is in agree- 
ment with the expected results from Fig. 1, because 
the electrons are tending to flow to the places which 
have the lowest potential energies. 

The absorption effect of the PDS can significantly 
limit the plasmon diffuse scattering (see right column 
in Fig. 3). The scattered electrons between the atomic 
columns are absorbed during the propagation. The 
main electron beam is still distributed along atomic 
columns. This is due to electron channelling. As 
noticed in Fig. 2 Iz increases as the electron goes into 
the surface. This effect limits the penetration depth 
of the electrons, and it improves the surface structural 
sensitivity of the REM (Wang & Lu, 1988). 

This paper has concentrated on the presentation 
of the modified multislice theory for calculating the 
energy-filtered inelastic images. It is also possible to 
use (10) to calculate the total contributions of the 

elastic and inelastic electrons, with energy-loss range 
from 0 to oo, to the REM images. The incident wave 
can be divided into many narrow streams, so that 
each of them can be considered as a monoenergetic 
beam during the propagation. Propagation of each 
stream is governed by (10a) to (10c). The final diffrac- 
tion results of the beam can be obtained from the 
summation of all these streams. By dividing the 
incident wave into many small streams, the corre- 
sponding electron feed-in problem in the REM 
geometry can be solved. All these calculations are 
reported elsewhere (Wang, 1989a, b). 

Based on the theory presented in § 3, the energy- 
filtered inelastic single-electron-excitation images can 
be simulated. The difference is in the use of the 
core-shell differential excitation cross section in the 
calculation of Uef. With the improvement of modern 
electron microscopy techniques, it may be possible 
in the future to get inelastic core-shell high-resolution 
images. 

The author is grateful to Professor J. M. Cowley 
for some critical discussions. Thanks to Mr Ping Lu 
for calculating Fig. 3. 
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